Home publications About PhD. Proposal

UB Swarm Deploying Environment

 

 

 

When a swarm robotic system adopts a decentralized approach, the desired collective behaviors emerge from local decisions made by robots themselves according to their environment. Decentralized modular robotics is an emerging area that has attracted many researchers over the past few years. It has been proven that a single robot with multiple capabilities cannot necessarily complete an intended job using the same time and cost as that of multiple robotic agents. Different robots, each one with its own capabilities, are more flexible, robust and cost-effective.

This proposal presents the results of a comprehensive investigation of the current state of swarm robotics research, organizing and classifying that research into a preliminary taxonomy. The objective is to define the starting point of potential algorithms leading to the development of a new robotic platforms and new software environment interface to manipulate and deploy these robotic agents. In order to achieve these goals, this research work first provides a detailed summary of systems that have been classified under four main categories of the general multi-robot system platforms, namely: self-reconfigurable, modular, self-replicating, and swarm systems. Second, it provides a discussion on the high-level control environments that that have been developed by other researchers in this particular area.

The ultimate result of this research work is the development of a software application that facilitates the rapid deployment of a multiple robotic agents. The software deploys these robots using its GUI command window and uploads program which are integrated with an embedded middleware. The integrated middleware allows auto-detection of the attached standardized components according to current system configurations. The operator is only required to select several available robot agents and assign the group of robots a particular task from a set of available tasks. To reduce efforts in operate swarm robotic systems, the proposed application offers customization of robotic platforms by simply defining the available sensing devices, actuation devices, and the required tasks. Another objective for proposed design is to improve code and component reusability. Usage of the proposed framework prevents the need to redesign or rewrite algorithms or applications should any changes take place in the robotís platform. UBSwarm environment is the name given to the deployment interface. UBSwarm is a high end interface used for distributing algorithms to heterogeneous or homogeneous robotic agents.(Read more)