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Abstract 

In this paper, we present an efficient system for computing the 3-D reachable 
workspace for redundant manipulators with joint limits. In our system, we have 
decomposed the 3-D reachable workspace problem into two major subproblems: 
workspace point generation and surface computation. We describe different algo- 
rithms that are used to build these modules. Finally, we discuss the advantages 
offered by our system. 

1 Introduction 

The reachable workspace of a manipulator is the volume or space encompassing all points 
that a reference point P on the end effector traces as all the joints move through their 
respective ranges of motion [4, 81. The problem of computing the workspace for a redundant 
manipulator has applications in a variety of fields such as robotics, computer aided design, 
and computer graphics. Although the workspace problem has long been on the agenda of 
researchers in robotics, they have not formulated a satisfactory and general solution. A 
workspace is said to have a hole if there exist at least one straight line which is surrounded 
by the workspace yet without making contact with it [11, 61. A workspace is said to  have 
a void if there exist a closed region R, buried within the reachable workspace, such that all 
points inside the bounding surface of R are not reached by the manipulator [ll, 61. 

The first efforts to compute the manipulator workspace, based on its kinematic geometry, 
started in the mid 1970’s [8,4]. They proved that the extreme distance line between a chosen 
point on the first joint axis and the center point of the end effector intersects all intermediate 
joint axes of rotation. However, the above result is not valid if any intermediate joint axis is 
parallel to  the extreme distance line, two joint axes intersect, or any joint is not ideal (has 
limits). Kumar and Waldron [5] presented another algorithm to compute the manipulator’s 
workspace. In their analysis, an imaginary force is applied to  the reference point at the end 
effector in order to achieve the maximum extension in the direction of the applied force. 
The manipulator reaches its maximum extension when the force’s line of action intersects 
all joint axes of rotational joints and is perpendicular to all joint axes of prismatic joints 
(since the moment of the force about each joint axis must be zero). Every joint of the 
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manipulator can settle in either of two possible positions under the force action. Hence, the 
algorithm results in 2N-1 different sets of joint variables for a manipulator of N joints in 
the direction of the applied force. The concept of stable and unstable equilibrium is used to 
select the set of joints variables that results in the maximum extension in the force direction. 
This algorithm has exponential time complexity and only deals with manipulators that have 
ideal joints (without limits). Tsai and Soni [9, 101 developed another algorithm to plot the 
contour of the workspace on an arbitrarily specified plane. The algorithm suffers from the 
limitations of not only being restricted to computing 2D workspace cross sections but also 
high computational cost. The previous published workspace algorithms suffer from one or 
more of the following drawbacks: 

0 High computational cost. 

0 Computing only 2-D cross sections. This is not adequate for manipulators with joint 
limits since the workspace is not axi-symmetrical. In addition, two dimensional workspace 
representation forces the user to memorize the data set by looking at multiple displays 
before making an interpretation or a decision. 

0 Dealing only with manipulators that have specialized geometry. 

0 Sensitivity to geometrical and numerical errors or approximations. 

2 System Design 

In our system, the 3-D reachable workspace problem is decomposed into two major subprob- 
lems, workspace point generation and surface computation. The point generation module 
computes workspace points by direct kinematics based techniques. The surface computation 
module extracts the workspace contours utilizing a subset of the points generated by the first 
module. 

2.1 Workspace Point Generation 

We use direct kinematics based algorithms to compute a dense set of the reachable workspace 
points. A redundant manipulator is modeled as a series of links connected with either revolute 
or prismatic joints. We assume without loss of generality that each joint has one degree of 
freedom. A joint with m degrees of freedom is modeled as m joints connected with links of 
zero lengths, each of these joints has a lower limit and an upper limit. The first link of the 
manipulator (link 1) is connected to the base (link 0) by joint 1. The final link, denoted by 
the end effector (link n) has no joint at its end. A coordinate frame is attached to each link. 
A homogeneous matrix A is used in order to describe the relationship between consecutive 
frames [7, 21. The elements of matrix A are computed by using D-H notations for both 
prismatic and revolute joints. The description of the end effector (link n) with respect to the 
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base, denoted by T,, is given by T, = A1A2 ... AnP1A,. The computational cost of computing 
each point is O(n), where n is the number of degrees of freedom that are associated with 
joints in the path from the end effector (distal linkage) to the proximal linkage. 

2.2 Surface Computation 

Workspace points that are computed by the above module .don’t necessarily lie on the surface 
boundary. We use an edge detection algorithm in order to obtain the workspace boundary as 
well as the holes and the voids that are buried inside the reachable workspace. This can be 
achieved by computing the dimensions of the cube that encompasses the workspace points. 
This cube is divided into cells according to the required resolution of the application. If 
the cell contains a workspace point, it  is marked by one and zero otherwise. A workspace 
cell is considered a boundary cell if any of its neighbors is marked by zero. A geometric 
primitive (triangle or polygon) is used to  interconnect the detected contours, and finally the 
resulting geometric representation is rendered. This can be achieved by using optimal surface 
reconstruction mechanisms developed by Fuchs [3] for planar contours. Those techniques 
utilize both graph theory and optimization procedures for solving the triangulation problem. 
We use the “shortest diagonal” algorithm developed by Christiansen [l] since it is very fast 
and works well for consecutive contours which are mutually centered and of similar size 
and shape. This algorithm lends itself easily to the workspace problem since the workspace 
boundaries exhibits similar properties. 

3 Conclusions 

Our system offers the following advantages: 

0 Modularity: Decomposing the workspace problem into independent modules allows 
incorporating new techniques into the system, specially in the surface fitting module 
which is a very active area of research. In addition, it becomes easier to  maintain and 
debug the implemented system based on modular design. 

0 Flexibility: Our system allows the user to select between low and high workspace 
surface quality based on the application type and deadline. This is achieved by control- 
ling the number of workspace points that are used by the surface computation module. 
None of the existing approaches offers this capability. 

0 Parallel Implementation: Our system lends itself easily to parallel implementation. 
The workspace point generation module can be implemented in parallel by dedicating 
each processor to compute different workspace points. The surface computation module 
can also be implemented in parallel by assigning each processor to  compute a contour, 
and finally assigning each processor to  compute different inter-slice connection. 
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0 Adaptability: According to the nature of the application, the system allows the user 
to compute the reachable workspace envelope with or without holes and voids, based 
on the application requirements. 

0 Generality: This system uses efficient and adaptive algorithms for computing the 
3-D reachable workspace of articulated linkages, not only those with redundant degrees 
of freedom, but also those with joint limits. The computational complexity of the 
system is linear in terms of the number of degrees of freedom. 
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