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INTRODUCTION

The process of purchasing the right
manipulator(s) for a predetermined task can often
turn to be very frustrating, especially when budget,
time or minimal losses are essential factors. The
market tends to get larger and variety driven and
there is a choice for almost any given price range.
However, the price / size ratio seems to remain
constant. Larger scale manipulators do not show
the price amortization enjoyed by the majority of
the computerized consumer hardware over the past
few years. In addition, the manufacturers for many
of these manipulators do not provide adequate pre-
sales supporting technical material (whether a re-
sult of the lack of standardized specifications or pure
negligence), nor effective warranties and service.

This paper first presents some of the aspects
of the manipulator utilized within the laboratory, then
introduces a fully functional simulation and control
software specifically designed to address the prob-
lems mentioned in the abstract section. The soft-
ware package could, for example, be used from
student residences as a “virtual” manipulator so that
students can write their own simulation and control
software (project, homework assignments, etc.) that
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could be then tested “live” on the actual robot class.
Such usage can also significantly reduce the safety
risks involved with freshmen students attempting
to control the robot.  The package can also be
“worked-on” by student, for example adding vision
processing or any project specific duties, once the
controlling and simulation parts are developed. The
software could also act as a remote manipulation
tool from anywhere on the web, by having it con-
nect to another copy of the tool that resides as a
net server on a machine that is connected to the
manipulator serially. The model can be extended
to an unlimited set of simulation packages that are
all interconnected through TCP/IP and ultimately
connected to the actual robot. These are only some
of the immediate applications that although not
unusual, are actual implementation issues in most
of the schools.

THE MANIPULATOR

We utilize a manipulator manufactured by
Mitsubishi, model RV-M1 (Movemaster EX) (Figure 1).

The model is known as a general-purpose com-
mercial manipulator used in industrial applications
(for example used in pharmaceutical / chemical in-

Figure 1. Mitsubishi RV-M1 (Movemaster EX)
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dustry to manipulate substances in a grid).
The arm offers 5 degrees of freedom (not in-

cluding the gripper), DC servo motor drives. We
will detail specifications as needed through the
paper. The reader can consult a distributor for a
detailed brochure (www.rixan.com for example).
The robot comes with all the necessary informa-
tion to program it from a serial port equipped com-
puter or from its “teaching” pad and includes a soft-
ware package (mainly editor) that allows writing
short program sets using the robot’s language set
and have storing them in RAM/EPROM. The con-
troller of the robot accepts direct and inverse kine-
matics commands directly through the serial port.

THE SIMULATOR

Overview
The simulator was designed from its inception

with the student as main beneficiary. One of the
goals was to be able to reproduce as much as pos-
sible the actual robot and its characteristics through
the software package, in such a way so that the
software itself could act as a “virtual” manipulator,
almost replacing the need for the actual manipula-
tor. Such an approach should allow the student to
familiarize him (her) self much better with the re-
spective manipulator, and to encounter no surprises
when later connecting to the actual robot.

Design Consideration
Interface, GUI

One of the commonly encountered problems in
the majority of the simulators available nowadays
is their graphic user interface layer. Students tend
to get excited when installing a certain simulator,
but very often loose their determination when they
see a briefly sketched set of links, face the lack of
an intuitive GUIs or instant overloads of variables
and input coordinates. While our simulator utilizes
a high level of theoretical complications, it main-
tains a very presentable visual and physical imple-
mentation that tends to be the actual final product.
We opted for using OpenGL and rendering the
manipulator closely to the actual model, such that
it cannot be confused with any other manipulator
(Figure 2).

Programming Language
A second aspect to consider is the program-

ming language to choose. Many students or engi-
neers do not always have the right aspiration to-
wards advanced programming techniques. This
should not be a showstopper factor for a robotics
enthusiast.

As a result, we opted for using Visual Basic®
and making the code as simple (though robust) as
possible. With the help of publicly available soft-

Figure 2. Simulated manipulator

ware tools [3], the OpenGL power was integrated
in Visual Basic®. Having these two entities as a
starting base, the simulator code proves to be
simple; few changes in the code can derive cus-
tom requirements.  Visual Basic® is also a great
medium for describing robotics equations such as
inverse kinematics / dynamics, trajectory calcula-
tions, as debugging of these tends to be much sim-
pler when compared to most of the other languages.
There is a limitation drawback that boosts C++ as
a preferred choice at the professional levels (fast
synchronizations, advanced hardware control at
assembler level, etc.), although the differences tend
to be diminished by technologies like Active X.

The following sections present each distinctive
part of the simulator.

Front End (GUI)

When the simulator is activated, the user en-
counters the view from Figure 2, and dragging of
the mouse over the graphics scene will rotate the
point of view around the manipulator. The user has
the choice to perform many different view related
operations through the Scene tab: set the mouse
to perform desired rotations, translations, change
the point of view or lock onto views such as “top”,
“side”, etc. The coordinates of the viewing point are
dynamically updated on the status bar of this view.
The orientation of the axes is also displayed in the
lower left corner, and their coloration is used con-
sistently throughout the simulation package to rep-
resent distinctly each of the axes. In general, any
of the options that are used have a direct effect on
the CAD of the manipulator displayed and even on
the actual robot, if a connection is active.
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Kinematics
Although the MoveMaster EX manipulator ac-

cepts as controlling parameters both direct and in-
verse kinematics by design (thetas or X, Y, Z, roll,
pitch, yaw), in the simulator we decided to imple-
ment the direct and inverse kinematics as well, giv-
ing the user the option to see direct/inverse kine-
matics action on the CAD model, without the need
to be connected to the manipulator. The inverse
kinematics equations were solved through direct
geometric / trigonometric approaches [4], although
similar equations would have been reached through
the usage of more traditional DH (Denavit –
Hartenberg) tables [5]. A step-by-step demonstra-
tion of the equations used are available online at
www.bridgeport.edu/sed/risc, and [6,7,8] show pre-
vious similar simulation work that was successfully
implemented.

The kinematics control module is available
through the “MoveMasterEX” tab (Figure 3).

Notice that although the Velocity Kinematics and
Acceleration Kinematics are provided as sub op-
tions under the Kinematics options, they are not
implemented as the MoveMasterEX manipulator
does not support them (the manipulator only has
limited velocity control, a choice of 5 or 6 preset
values [9]). If it is desired to adjust the software
tool for a different manipulator, then the developer
will implement these as needed, following closely
the implementation of the existing kinematics
model.

The Position Kinematics interface (Figure 4) al-
lows the direct and inverse kinematics control of
the robot.

The activation of any of the direct kinematics
scroll bars will instantly update the inverse kine-
matics ones and vice versa. The CAD manipulator
moves accordingly. If the simulation package is con-
nected to the actual manipulator or a server ver-
sion of the simulator, these will move too (these
features are described through the following sec-
tions). If by adjusting any of the inverse kinematics
scrollbars the manipulator would risk an out-of-
workspace position (solution), the user will be
warned and both the CAD robot and the actual one
(if connected) will not be updated until a new cor-
rect (possible) position is reached.

Such an implementation allows a very safe con-
trol over the existing manipulator and allows the
user to easily observe the actual workspace and
its limitations.

The marginal values used for thetas and the
inverse kinematics were matched from the robot’s
technical manual [9].

Trajectories
Trajectory control / plotting is an essential step

in any moderated robot control project. The simu-

Figure 3. MoveMaster EX tab

Figure 4. Position Kinematics Interface

lator encapsulates a robust trajectory generation
module, and through the easy to use source code,
the user should be able to observe and modify as
needed the implementations. The trajectory curves
implemented in this package are Lagrange,
COONS, Hermite, B-Spline, Bezier and Ferguson
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[10], which should be more than sufficient for most
of the applications (Figure 5).

The user can set up and adjust trajectories with-
out too much experience with the simulator. A set
of control points needs to be defined (2 to 50), then
a number of intermediate points for the interpola-
tions and the trajectory will be dynamically adjusted
in the scene and can be applied to the actual ma-
nipulator through the Apply option. Figures 6, 7, 8
show a few examples of designed trajectories
(Lagrange, Hermite and Bezier respectively).

Figure 5. Trajectory Settings Figure 6. Four points Lagrange trajectory curve

Figure 7. Four points Hermite trajectory curve

Figure 8. Four points Bezier trajectory curve
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For choosing and adjusting the actual control
points and their exact order, the user will combine
the Position Kinematics panel described above with
the Trajectory Point Set option (Figure 9).

Once the arm is moved to the desired location
and with the desired pitch/yaw (using the Position
Kinematics Pad), the user can set this point, set
the gripping forces and navigate from a set point to
another (using the Trajectory Point Settings panel).
Once a trajectory is set to the desired parameters,
it can be saved as a file and reused. Although the
panel in figure 9 displays options for speed and
acceleration at the respective point as well, they
are not implemented due to the limitations of the
robot. If the simulator package is to be adjusted for
a different manipulator, the developer will be able
to use the existing interface and will probably opt
for a similar backend implementation as the one
here. The actual robot will move synchronously with
the users operations if it is connected to the simu-
lator, and throughout the steps necessary to set up
a trajectory the CAD model supplies continuous
feedback to the user.

Other MoveMaster EX Settings
For optimal results, the simulator allows for fine

adjustment of some of the manipulator’s simula-
tion parameters (Figure 10).

IK Tolerance
Allows the user to adjust the values that deter-

mine the precision of the inverse kinematics mod-
ule. The user needs to be careful with the values
as they could cause inverse kinematics replies that
are not within the actual workspace of the manipu-
lator. The IK Velocity and IK Acceleration Tolerances
are not implemented due to the limitations of this
robot, although are present if a different robot sup-
porting them is to be used.

Home Position
The user can redefine the nesting position of

the arm, so when the simulator is connected to the
actual robot, the robot will move to the newly set
nest position. Robot Nest, will use the factory (or
teaching pad) set nesting position. Sym Default, will
use the simulator’s default nest position, which in
this case coincides with the factory default one. In
Sym Current, the current simulator/CAD position
will be used as the nest position.

When Connecting
The user can also control the way in which the

position synchronization between the CAD model
and actual robot is done when the connection is
made.  Sym Gets Robot Coords, will leave the ma-
nipulator at its current position and adjust the CAD
model coordinates to match that, while Robot Gets
Sym Coords will cause the manipulator to move to
the position current in the simulator/CAD model.

Figure 9 Trajectory Point Settings

Figure 10. MoveMaster Settings

Vision Features
To ease the development of vision processing

algorithms, the simulation tool allows the user to
connect a camera to the package and have frames
or sequences of frames available for processing.
We have tested the simulator with a USB camera
model DVC323 by Kodak under Microsoft Windows
2000, although any camera with a valid VFW (Video
for Windows) driver will work as well. For the visual
support, we have picked a publicly available OCX
control (Xvideo2 by www.cbcsolutions.com), al-
though there are plenty of choices for controlling a
digital camera or camcorder from within a Visual
Basic® application.

A more distinct feature in the simulation pack-
age is the ability to have the package run in server
mode and have a client session connect to it and
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retrieve for processing a bitmap image of the “vir-
tual” scene. For example a user could decide to
add a few objects to the scene (Figure 11) of the
server application, then have this bitmap transmit-
ted to the client session for actual vision processing.

The client tool would normally not have these
objects in the scene, as it would be used as a simu-
lator /control tool on the images that arrive from
the server, which in fact acts as the virtual “real”
manipulator. The goal could be to grab the virtual
objects (for example). The user could also request
different views of the server scene for easier pro-
cessing. This would not be possible through an
actual (physical) camera, as cameras cannot be
dynamically re-positioned unless with the aid of a
second or more manipulators. The simulation tool
can also be used to send to any client level appli-
cation the actual video camera images that are
grabbed as described in the previous paragraphs.
As an example, a student could build a simulation
and control package with vision processing that
would actually perform on this simulator and not
an actual robot. If the robot and/or the camera are
present, the simulator can still be used.

Connecting to the Actual Robot
The connection to this robot needs to be done

through a serial port. This process has been sim-
plified and the typical failures of adjusting the port
settings have been eliminated (Figure 12).

Although the default settings should only require
changes to the connected COM port, any other
serial port option can be adjusted and tested. Once
the test is successful the connection can be made
and the actual robot will be in synchronization with
the CAD model. The TEST choice will ensure that
the robot is properly connected and does feedback
properly on the selected port coordinates.

A second connection choice is available too,
which is TCP/IP. If another copy of this simulation
tool is running and is active as a server, its IP and
Port need to be specified and the connection can
be made to the second simulator, which conse-
quently can be connected to the actual robot (please
see next section for more details), or to a chain of
other servers and then to the actual robot.

Networking the Simulator
The simulator can be switched to Server mode,

which will allow a client session of the simulator,
usually located elsewhere geographically, to con-
nect through TCP/IP and control the server CAD
model. The connected client communicates with the
server through direct kinematics (thetas), although
the TCP/IP port protocol implementation allows
many types of communication, even direct passing
of robot specific commands to the serial port of the
robot. The server could be simultaneously con-

Figure 11. Objects added to the scene

Figure 12. MoveMaster Connection Settings
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nected to the actual robot or be a client to another
instance of the tool, thus a chain of simulation pack-
ages is possible (Figure 13).

Such a connection model would be very appro-
priate for a class simulation, where each student’s
workstation could be set to display the exact set-
tings of the client simulator (professor’s or project
presenter’s workstation) and this is further chained
to the actual robot as well. The TCP/IP networking
also allows for easier development of other simu-
lation software, by simply running the server and
the “to be designed” client on the same machine
as in Figure 14.

Any of the chained workstations can be con-
trolled through the position kinematics interface, in
this case overriding all the consequent workstations
down on the chain to the actual robot (if connected).
The workstations could also be left to display the
position kinematics interface, which would adjust
the scroll bars automatically when a connected cli-
ent sends thetas.

As an extension to the networked model and
its server side implementation, we have extended
the package for wireless control through a cell
phone, a wireless (HDML - Handheld Device
Markup Language) server that allows basic control
of the manipulator.

A logging window allows the visualization of the
protocol messages, while the CAD model and (if
connected) the actual manipulator will move to vari-
ous cell phone sent commands.

On the cell phone, once the web browser is
pointed to the IP/port address mentioned on the
top of the server window, the user is being sent a
small HDML page that allows him to activate any
of the joints of the manipulator by pressing a key
from 0 to 9 (0,1: base angle increase / decrease, 2-
3: elbow angle, etc). Once the user selects one of
the options, the server intercepts the choice, moves
the robot joint and presents the same controlling
page for further movements. Various websites such
as [11] proved useful in building the necessary
HDML although for an advanced application there

Figure 13 Networking Model

Figure 14. Server and Client applications running on the same workstation

are various books available. The cell phone server
features of the simulator were tested with various
cell phone models and various service providers.

Conclusions

In this paper, we presented a software model
designed to alleviate the access to high cost ma-
nipulators. The simulation package demonstrates
its effectiveness in completely supporting a spe-
cific manipulator, allowing for a full exploration of
the actual robot in a virtual environment without hav-
ing to purchase or use the robot. It offers a variety
of usage possibilities, from a stand-alone simula-
tion package, a networked simulation package, to
a complete “virtual” manipulator package. The avail-
ability of similar simulation tools for the majority of
high cost manipulators would solve the majority of
the problems involved with the acquisition of these
manipulators. The simulator can be uniquely uti-
lized in high end education institution, by allowing
the students to perform a large number of projects
involving a certain manipulator. The simulator could
be used for extended student projects and having
the students work without needing access to the
actual manipulator. The tool can evidently be used
as a remote automation system, or a distance learn-
ing method, especially by setting up a networked
chain for all the students in a distance learning
class, with one student (or professor) demonstrat-
ing on the actual robot and the rest following the
scenes closely on their workstations.

By following the simulation approaches taken
by the presented package, high cost manipulator
manufacturers could increase and better target their
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market while customers such as educational insti-
tution could benefit on multitude of aspects as de-
tailed through the paper.

Currently we have successfully tested and used
the features detailed through this paper. The simu-
lation package can be found at www.bridgeport.edu/
sed/risc.
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