URK: Utah Robot Kit — A Three-link Robot Prototype
Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Anil Sabbavarapu!
UUSC-94-012

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

March 30, 1994

Abstract

In this paper we will present the stages of designing and building a three-link robot manipulator
prototype that was built as part of a research project for establishing a prototyping environment for
robot manipulators. Building this robot enabled us determine the required subsystems and interfaces
to build the prototyping environment, and provided hands-on experience for the real problems and
difficulties that we would like to address and solve using this environment. Also, this robot will be
used as an educational tool in robotics and control classes.

'This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University
of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document
are those of the author and do not necessarily reflect the views of the sponsoring agencies. This report has also been
submitted as a paper in the International Journal on Robotics Research

URK: Utah Robot Kit — A Three-link Robot Prototype

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson,
and Anil Sabbavarapu

March 27, 1994

Computer Science Department
University of Utah
Salt Lake City, Utah 84112, USA

Abstract

In this paper we will present the stages of designing and building a three-link robot
manipulator prototype that was built as part of a research project for establishing
a prototyping environment for robot manipulators. Building this robot enabled us
determine the required subsystems and interfaces to build the prototyping environ-
ment, and provided hands-on ezperience for the real problems and difficulties that
we would like to address and solve using this environment. Also, this robot will be
used as an educational tool in robotics and control classes.!

1 Introduction

Teaching robotics in most engineering schools lakes the practical side and usually students
end up taking lots of theoretical background and mathematical basis, and maybe writing some
simulation programs, but they do not get the chance to apply and practice what they have
learned on real robots. This is due to the fact that most of the robots available in the market
are either too advanced, complicated, and expensive (e.g., specialized industrial robots), or toy-
like robots which are too trivial and does not give the required level of depth or functionality
needed to demonstrate the main concepts of robot design and control. One of our goals in
this project, was to build a robot that is simple, flexible, and easy to use and connect to any
workstation or PC, and at the same time, is capable of demonstrating some of the design and
control concepts. We also tried to keep the cost as low as possible to make it available to any
engineering school or industrial organization.

'This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a
University of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed
in this document are those of the author and do not necessarily reflect the views of the sponsoring agencies.

Therefore, we built URK (Utah Robot Kit) which is a three-link robot prototype that has
a small size and reasonable weight which is convenient for a small lab or a class room. URK
can be connected to any workstation or PC through the standard serial port with an RS232
cable, and can be controlled using a software program with a graphical user interface.

This paper starts with a brief background of robot design and modules and the related
work in this area. Then, a detailed description of designing and building URK is presented in
Section 3. The communication between the robot and the workstation is discussed in detail in
Section 4. Section 5 is a quick overview of the prototyping environment which URK is part of.
Section 6 shows some results of testing and running URK. Finally, Section 7, is our conclusion
from this work.

2 Background and Related Work

2.1 Robot Modules and Parameters

Controlling and simulating a robot is a process that involves a large number of mathemati-
cal equations. To be able to deal with the required amount of computation, it is better to
divide them into modules, in which each module accomplishes a certain task. The most im-
portant modules, as described in [2], are kinematics, inverse kinematics, dynamics, trajectory
generation, and linear feedback control.

2.1.1 Forward and Inverse Kinematics

This module is used to describe the static position and orientation of the manipulator linkages.
There are two different ways to express the position of any link: using the Cartesian space,
which consists of position (z,y, z), and orientation, which can be represented by a 3 X 3 matrix
called the rotation matrix; or using the joint space, by representing the position by the angles of
the manipulator’s links. Forward kinematics is the transformation from joint space to Cartesian
space, while inverse kinematics is the transformation from Cartesian space to joint space.

One approach to the problem of kinematics analysis is described in [13], which is suitable
for problems where there are one or more points of interest on every link.

A software package called SRAST (Symbolic Robot Arm Solution Tool) that symboli-
cally solves the forward and inverse kinematics for n-degree of freedom manipulators has been
developed by Herrera-Bendezu, Mu, and Cain [6]. The input to this package is the Denavit-
Hartenberg parameters, and the output is the direct and inverse kinematics solutions. Another
method of finding symbolic solutions for the inverse kinematics problem was proposed in [14].
Kelmar and Khosla proposed a method for automatic generation of forward and inverse kine-
matics for a reconfigurable manipulator system [8].

2.2 Robot Dynamics

Dynamics is the study of the forces required to cause the motion. There are two problems
related to the dynamics of a manipulator: controlling the manipulator (inverse dynamics), and
stmulating the motion of the manipulator (forward dynamics). The dynamics module is the
most time consuming among the manipulator’s modules. That is because of the tremendous
amount of calculation involved in the dynamics equations. This fact makes the dynamics
module a good candidate for hardware implementation, to enhance the performance of the
control and/or the simulation system.

There are some parallel algorithms to calculate the dynamics of a manipulator. Several ap-
proaches have been suggested in [9, 10, 12] based on a multiprocessor controller, and pipelined
architectures to speed up the calculations.

2.3 Trajectory Generation

This module computes a trajectory in multidimensional space which describes the motion of
the manipulator. There are several strategies to calculate trajectory points which generate a
smooth motion for the manipulator. One of the simplest methods is using cubic polynomials.

2.4 Linear Feedback Control

A linear feedback control system is used in most control systems for positioning and trajectory
tracking. There are sensors at each joint to measure the joint angle and velocity, and there is
an actuator at each joint to apply a torque on the neighboring link. The readings from the
sensors will constitute the feedback of the control system. By choosing appropriate gains we
can control the behavior of the output function representing the actual trajectory generated.
Minimizing the error between the desired and actual trajectories is our main concern. Figure
1 shows a block diagram for the controller, and the role of each of the robot modules in the
system.

2.5 Local PD feedback Control vs Robot Dynamic Equations

Most of the feedback algorithms used in current control systems are implementations of a
proportional plus derivative (PD) control. In industrial robots, a local PD feedback control
law is applied at each joint independently. The advantages of using a PD controller are the
following:

e Very simple to implement.
e No need to identify the robot parameters.

e Suitable for real-time control since it has very few computations compared to the com-
plicated non-linear dynamic equations.

Feedback Control

. X
+ e =lIKi.nemalics|—‘
_fz\
- 3
b);ﬁ
| Trajectory
. Generation k k, -
X 1 4 .G,
SN R :
X Inverse o i 8§ o RS s ;
[Kinematics] 5
A
-4
o 29,
+ =

Figure 1: Block diagram of the Controller of a Robot Manipulator.

e The behavior of the system can be controlled by changing the feedback gains.

On the other hand, there are some disadvantages of using a PD controller instead of the
dynamic equations such as:

e It needs high update rate to achieve reasonable accuracy.
e To simulate the robot manipulator behavior the dynamic equations should be used.
e There is always trade-off between static accuracy and the overall system stability.

e Using local PD feedback law at each joint independently does not consider the couplings
of dynamics between robot links.

Some ideas have been suggested to enhance the usability of the local PD feedback law for
trajectory tracking. One idea is to add a lag-lead compensator using frequency response anal-
ysis [1]. Another method is to build an inner loop stabilizing controller using a multi-variable
PD controller, and an outer loop tracking controller using a multi-variable PID controller [15].
In general, using a local PD feedback controller with high update rates can give an acceptable
accuracy for trajectory tracking applications. It was proved that using a linear PD feedback
law is useful for positioning and trajectory tracking [7].

3 Prototyping a 3-Link Robot

3.1 Analysis Stage

This project was started with the study of a set of robot configurations and analyzed the
type and amount of calculation involved in each of the robot controller modules (kinematics,
inverse kinematics, dynamics, trajectory planning, feed-back control, and simulation). This

phase was accomplished by working through a generic example for a three-link robot to compute
symbolically the kinematics, inverse kinematics, dynamics, and trajectory planning; these were
linked to a generic motor model and its control algorithm. This study enabled us to determine
the specifications of the robot for performing various tasks, it also helped us decide which parts
(algorithms) should be hardwired to achieve specific mechanical performances, and also how
to supply the control signals efficiently and at what rates.

3.2 One Link Manipulator

Controlling a one-link robot in a real-time manner is not difficult, but on the other hand it
is not a trivial task. This is the basis of controlling multi-link manipulators, and it gives an
indication of the type of problems and difficulties that arise in a larger environment. The idea
is to establish a complete model for controlling and simulating a one-link robot, starting from
the analysis and design, through the simulation and error analysis.

A motor from the Mechanical Engineering lab at the University of Utah was used. This
motor is controlled by a PID controller. An analog [/O card, named PC-30D, connected to a
Hewlett Packard PC was used to connect the motor with the serial port of the PC. This card
has sixteen 12-bit A/D input channels, two 12-bit D/A output channels. There are also the
card interface drivers with a Quick BASIC program that uses the card drivers to control the
DC motor.

One of the problems we faced in this process was to establish the transfer function between
the torque and the voltage. The motor parameters were used to form this function by making
some simplifications, since some of the motor parameters have nonlinear components that make
it too difficult to make an exact model. Figure 2 shows the relation between torque and voltage
for a certain input sequence.

In general, this experiment gave us an indication of the feasibility of our project, and good
practical insight. It also helped us determine some of the technical problems that we might

face in building and controlling the three-link robot. More details about this experiment can
be found in [3].

3.3 Controller Design

The first step in the design of a controller for a robot manipulator is to solve for its kinematics,
inverse kinematics, dynamics, and the feedback control equation that will be used. Also the
type of input and the user interface should be determined at this stage. We should also know
the parameters of the robot, such as: link lengths, masses, inertia tensors, distances between
joints, the configuration of the robot, and the type of each link (revolute or prismatic). To
make a modular and flexible design, variable parameters are used that can be fed to the system
at run-time, so that this controller can be used for different configurations without any changes.

Three different configurations have been chosen for development and study. The first
configuration is revolute-revolute-prismatic with the prismatic link in the same plane as the

5

Torque-Volt Relation

240 fau.dat
220 /\ voltdat
200 I \

a0 | N

1.60 ‘ \

ol \

1.20 ‘ ‘

g || — \ \

080 \ \ A

ool ol A 1

AV \/

w20 \ \V N I

0.00 \/" \/—‘ N
LM

. | [[

50 || | /

e |] \/ \/

-1.20 \VI—

Figure 2: The relation between torque the voltage.

first and second links. The second configuration is also revolute-revolute-prismatic with the
prismatic link perpendicular to the plane of the first and second links. The last configuration
is three revolute joints (see Figure 3).

The kinematics and the dynamics of the three models have been generated using some tools
in the department called genkin and gendyn that take the configuration of the manipulator in a
certain format and generate the corresponding kinematics and dynamics for that manipulator.
For the trajectory generation, The cubic polynomials method, described in the trajectory
generation section, was used. This method is easy to implement and does not require much
computation. It generates a cubic function that describes the motion from a starting point
to a goal point in a certain time. Thus, this module will give us the desired trajectory to be
followed, and this trajectory will serve as the input to the control module.

The error in position and velocity is calculated using the readings of the actual position
and velocity from the sensors at each joint. Our control module simulated a PID controller to
minimize that error. The error depends on several factors such as the frequency of update, the
frequency of reading from the sensors, and the desired trajectory.

3.4 Simulation

A simulation program has been implemented to study the performance of each manipulator and
the effect of varying the update frequency on the system. Also it helps to find approximate

ranges for the required torque and/or voltage, and to determine the maximum velocity to
know the necessary type of sensors and A/D. To make the benchmarks, as described in the
next section, we did not use a graphical interface to the simulator, since the drawing routines
are time consuming, and thus give misleading figures for the speed.

In this simulator, some reasonable parameters have been chosen for our manipulator. The
user can select the length of the simulation, and the update frequency. The third model
was used for testing and benchmarking because its dynamics are the most difficult and time
consuming compared to the other two models. Table 1 shows the number of calculations in
the dynamics module for each model.

3.5 Benchmarking

One important decision that had to be made was: do we need to implement some or all of
the controller module in hardware? And if so which modules, or even parts of the modules,
should be hardwired? To answer these questions we chose approximate figures for the required
speed to achieve a certain performance, the available machines for the controller, the available
hardware that can be used to build such modules, and a time chart for each module in the
system to determine the bottlenecks. This also involved calculating the number of operations
in each module giving a rough estimate of the time taken by each module.

The simulator described in Section 3.4 was used to generate time charts for each mod-
ule, and to compare the execution time on different machines. The machines used in this
benchmarking effort include: SUN SPARCStation-2, Sun SPARCStation-10 model 30, Sun
SPARCStation-10 model 41, and HP-700. Table 2 shows the configurations of the machines
used in this benchmark, with the type, clock cycle rate, the MIPS and MFLOPS for each.

The simulation program was executed with an update frequency of 1000 Hz for 10 seconds,
which means that each routine was called 10,000 times. From this output, it was obvious that
the bottleneck was the dynamics routine and usually it took between 25% to 50% of the total
execution time on the different machines. From these results we found that the HP-700 was the
fastest of all, followed by the SPARC-10 machines. Figure 4 shows a speed comparison between
the machines. The graph represents the speed of each machine in terms of iterations per second.
The machines are SPARC-2, SPARC-10-30, SPARC-10-41, and HP-730, respectively.

Table 1: Number of calculations involved in the dynamics module.

Additions | Multiplications | Divisions
Model 1 89 271 13
Model 2 85 307 0
Model 3 195 576 22

Table 2: Configuration of the machines used in the benchmark.

SPARC-2 | SPARC-10 (30) | SPARC-10 (41) | HP-700
Clock Rate(MHz) | 40.0 36.0 40.0 66.0
MIPS 28.5 101.6 109.5 76.0
MFLOPS 4.3 20.5 22.4 23.0

These benchmarks helped us decide that a software solution on a machine like the Sun
SPARC-10 would be enough for our models, and there was no need for a special hardware
solutions. However, for a greater number of links, the decision might be different.

3.6 PID Controller Simulator

As mentioned in Section 2.5, a simple linear feedback control law can be used to control the
robot manipulator for positioning and trajectory tracking. For this purpose, a PID controller
simulator was developed to enable testing and analyzing the robot behavior using this control
strategy.

Using this control scheme helps us avoid the complex (and almost impossible) task of deter-
mining the robot parameters for our three-link prototype robot. One of the most complicated
parameters is the inertia tensor matrix for each link, especially when the links are nonuniform
and have complicated shapes.

This simulator has a user friendly interface that enables the user to change any of the
feedback coefficients and the forward gains on-line. It can also read a pre-defined position
trajectory for the robot to follow. It also serves as a monitoring system that provides several
graphs and reports. The system is implemented using a graphical user interface development
kit called GDI.?2 Figure 5 shows the interface window of that simulator.

3.7 Building the Robot

The assembly process of the mechanical and electrical parts was done in the Advanced Manu-
facturing Lab (AML) with the help of Mircea Cormos and Prof. Stanford Meek. In this design
the last link is movable, so that different robot configurations can be used (see Figure 6).

There are three different motors to drive the three links, and six sensors (three for position
and three for velocity), to read the current position and velocity for each link to be used in
the feedback control loop.

This robot can be controlled using analog control by interfacing it with an analog PID
controller. Digital control can also be used by interfacing the robot with either a workstation

2GDI was developed in the department of Computer Science, University of Utah, under supervision of Prof.
Beat Briiderlin.

