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Abstract In this study, we propose an intelli-
gent automated disassembly cell for online (real
time) selective disassembly. The cell is composed
of an industrial robotic manipulator, a camera,
range sensing and component segmentation visual
algorithms. The cell prototype allows for robotic
sensory-driven disassembly under uncertainty. An
online genetic algorithm model for selective dis-
assembly is also proposed for optimal and near/
optimal disassembly sequencing.
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1 Introduction

Advanced technology products are regularly ren-
dered technically obsolete within a few years of
commercialization due to the rapid pace of tech-
nological developments. Thus, electronic products
are frequently discarded before their materials
degrade. These complex End-of-Life (EOL) prod-
ucts contain a broad spectrum of materials includ-
ing precious metals such as silver, and valuable
materials such as copper. Therefore, efficient
recovery of materials in the electronic EOL prod-
ucts is essential for economic reasons. Further-
more, the conceptual lifetime of an electronic
product depends primarily on the pace of super-
seding technological change that makes obsolete
the otherwise fully-functioning product. Hence,
the discarded product is likely to contain one
or more usable components. The economically
and environmentally sustainable option is to reuse
these components in technically valid products.
EOL processing options, e.g., reusing, recycling,
and remanufacturing, are effective ways to regain
the materials and the components in electronic
EOL products. Regardless of the motivation, most
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EOL processing options necessitate a certain level
of disassembly. Disassembly operations are very
complex, time-consuming, and expensive. There-
fore, limiting the disassembly operations to recy-
clable materials and reusable components in the
EOL product is crucial in order to render elec-
tronic waste recovery operations economically
viable. Responding to this need, generating disas-
sembly algorithms for selective disassembly [1, 2]
is the first major research topic presented in this
paper.

Electronic waste recovery, EOL processing op-
tions, and disassembly of electronic products are
well documented [3–16]. However, related liter-
ature falls short in providing realistic methods
for product recovery. Despite the ever growing
research on disassembly of electronic products,
the proposed methods generally assume that the
part locations are known in the product structure.
Furthermore, the majority of these algorithms
function under the assumption of a known hierar-
chical disassembly path, e.g., for a personal com-
puter (PC) disassembly, the front or side cover
must be removed to access the power supply, and
the power supply must be removed to access the
processor and the fan, etc. However, EOL elec-
tronic products—specifically PCs—are unlikely to
preserve their original product structure through-
out their useful lives. The bill-of-materials (BOM)
is likely to be altered by the user for a variety
of reasons such as repair, upgrade, or personal
configuration preferences. Hence, the EOL prod-
uct is likely to embody missing, added or replaced
parts. This is also true for the fastener structures;
when a part is taken out or replaced with another,
the type and the location of fasteners are likely to
change. RAM (random access memory) slots and
PCI (peripheral component interconnect) slots
are good examples for this type of uncertainty
since these parts are more frequently replaced
compared to the rest of the BOM.

In this study, we propose an intelligent auto-
mated disassembly cell utilizing a setting com-
posed of an industrial robotic manipulator, a
camera, range sensing and component segmen-
tation visual algorithms to design a prototype
of a robotic sensory-driven disassembly cell.
Figure 1 depicts the Mitsubishi Industrial Micro-
Robot System Model RV-M1 and HP Pavilion

Fig. 1 The RISC laboratory MITSUBISHI MOVEMAS-
TER industrial robotic manipulator, camera, and EOL PC

6370Z Desktop PC with an additional hard drive
and three RAM modules.

The proposed model aims at handling uncer-
tainty in the EOL product structure and consists
of two modules: (1) a sensory-driven visual and
range acquisition and recovery system, and (2) an
online genetic algorithm (GA) model. For the
sensory processing system, a sensory module is
designed to acquire and recognize part descrip-
tions and coordinates via the usage of range and
2-D sensors; complemented with the appropriate
pattern matching vision algorithms (Fig. 2). The
visual part-recognition software module output is
then fed into the GA algorithm that generates
online optimal and/or near-optimal disassembly

Fig. 2 Camera output for the power supply, sound card,
and modem card detection within the EOL PC



J Intell Robot Syst (2012) 68:43–52 45

Disposal/Storage

Reuse

Recycle

Fig. 3 The Bill-of-Materials of the PC with corresponding
END-OF-LIFE processing options

sequences for the detected parts in the product
structure (Fig. 3).

In Fig. 3, “0” is the robot reference point
where the disassembly operation will start. Table 1
lists the remaining component information with
corresponding material, disassembly time, and
disassembly method information. Basically, if the
component is subject to reuse, non-destructive
disassembly is selected as the appropriate disas-
sembly operation to preserve the physical struc-
ture of the component. If the component is subject
to recycling, (i.e., the material value is impor-
tant,) the faster disassembly option—destructive

disassembly—is preferred. The components that
do not contain any market value are subject to
storage or proper disposal and are not disassem-
bled unless the precedence relationships mandate
their disassembly for the remaining components.

2 Background

Disassembly sequencing problems are combina-
torial and NP-complete, prohibiting utilization of
exhaustive search techniques. Therefore, genetic
algorithms (GA) have been gaining popularity for
such problems. One of the multi-objective optimi-
zation applications was proposed by Valenzuela-
Rendón and Uresti-Charre [17]. Keung et al. [18]
also applied a multi-objective GA approach to
a tool selection model. Lazzerini and Marcelloni
[19] used GA in scheduling assembly processes. In
the area of disassembly, Kongar and Gupta [20]
proposed a GA for disassembly sequencing prob-
lems, while McGovern and Gupta [21] applied
genetic algorithm to disassembly line balancing.
For a thorough review of work done in the area
of product recovery, see Ilgin and Gupta [16],
Gungor and Gupta [15], Lee et al. [22], and
Lambert and Gupta [23].

Precedence relationships that must be pre-
served during disassembly operations constitute
another factor that increases the computational
complexity of disassembly sequence planning
problems. Sanderson et al. [24] proposed a
methodology considering precedence relation-
ships in assembly sequence planning. Seo et al.

Table 1 Components of
the eol pc with
corresponding material
and disassembly
operation information

aD Destructive,
ND Non-destructive

i Description Material Disassembly

Time dti (s) Methoda

0 Robot reference point
1 Side cover Aluminum (A) 3 D
2 Power supply Copper ( C ) 6 D
3 Sound card Plastic (P) 3 ND
4 Modem card Plastic (P) 3 ND
5 CPU Plastic (P) 5 ND
6 Hard drive Aluminum (A) 4 ND
7 CD drive Aluminum (A) 4 ND
8 Zip drive Aluminum (A) 4 ND
9 RAM Plastic (P) 3 ND
10 Drives slot Aluminum (A) 2 D
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[25] proposed a GA for optimal disassembly se-
quence generation considering economical and
environmental factors. Bierwirth et al. [26] and
Bierwirth and Mattfeld [27] proposed prece-
dence preservative crossover (PPX) technique for
scheduling problems. The algorithm, which is also
employed in this study, preserves the precedence
relationships in the product structure. Hui et al.
[28] utilized a genetic algorithm to determine
good disassembly sequences by converting disas-
sembly sequence planning problem into a search-
ing problem on an information-enhanced graph.
Shimizu et al. [29] developed a prototype system
for strategic decision-making on disassembly for
recycling at the design stage of the product life
cycle.

In the area of automated disassembly, Torres
et al. [30, 31] presented a personal computer
disassembly cell that is able to handle a certain
degree of automatism for the non-destructive dis-
assembly process. This work was then followed
by Pomares et al. [32] who generated an object-
oriented model required for developing a disas-
sembly process. Gil et al. [33] proposed a flexible
multi-sensorial system for automatic disassembly
using cooperative robots. As a follow-up work,
Torres et al. [34] presented a task planner for a
disassembly process based on decision trees.

In this paper, we present a GA-based tech-
nique for generating online adaptive disassem-
bly sequences for partial disassembly [35]. Online
adaptive systems proposed by Milani [36], allow
modeling highly evolutionary domains where so-
lution environment are subject to changes over
time. Therefore, the model is very suitable for dis-
assembly sequencing problems since the solution
environment changes following each disassembly
action due to the modifications in the bill-of-
materials.

3 Materials and Methods

3.1 Visual Processing via Template/Pattern
Matching

Template/pattern is defined as anything fashioned,
shaped, or designed to serve as a model from
which something is to be made: a model, design,

plan or outline, where as matching is the act of
comparing in respect of similarity; to examine
the likeness or difference [37]. The proposed vi-
sual processing algorithm utilizes a coarse-to-fine
3-D recovery mechanism. First, in order to reduce
the search space for the 2-D camera-based algo-
rithm, Hokuyo UHG-08LX laser range sensing
and coarse scene segmentation are performed.
The resulting crude 21/2-D map of the major
components of the PC is then accepted as the
search space. The time required for laser scan-
ning is approximately 2.3 s. A 352 × 288 pixel
CCD-array camera is used to capture the on-
line 2D images from the PC under disassembly.
Initially, the actual BOM templates sizes (e.g.
407 × 229 pixels for the power supply, 87 × 212
pixels for the modem, and 69 × 245 pixels for the
sound card) are used to perform the matching
process over a captured image of a resolution of
1000 × 750 pixels. However, the time required for
the matching process was detected to be higher
than the minimum disassembly time of the BOM
(e.g. the time required for matching the power
supply was 1.475 s, 0.837 s for the modem, and
0.877 s for the sound card). This required the
robot arm to become idle after the removal of
each part. Thus, the resolutions of the stored
patterns were reduced and a pyramid structure
was utilized with captured images from the PC
under disassembly to detect each possible part.
The minimum resolution for the captured image
used in the matching process was 160 × 120 pix-
els, and the resolution of the BOM templates
varied. Table 2 depicts the used resolution and
the corresponding detection times of each part of
the BOM. A correlation/convolution-based 2-D

Table 2 BOM parts resolutions and detection times

Part Resolution Detection time (s)

Side cover 74 × 42 0.078
Power supply 82 × 49 0.0312
Sound card 9 × 65 0.0156
Modem card 10 × 62 0.0156
CPU 63 × 10 0.0312
Hard drives 14 × 23 0.0156
CD drive 35 × 28 0.0156
Zip drive 18 × 21 0.0156
RAM 62 × 4 0.0156
Drives slot 32 × 25 0.0156
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template matching module is then executed, after
the appropriate scaling, rotation and histogram-
equalization algorithms are implemented, in order
to filter visual noise and to speed up the template
matching process. Components that are matched
with a high confidence level are then tagged and
a cross-reference—given the calibrated camera
parameters—is then performed to recover the

planar parameters of the recognized parts. The
depth parameters are recovered from the 21/2-
D map stored by the laser sensor, in order to
guide the manipulator end-effector (gripper) for
eventual disassembly.

The correlation algorithm used in the matching
process is the normalized cross-correlation using
the equation provided in [39–41]:

δ(u, v) =
∑

x,y

(
f (x, y) − fu,v

) (
t (x − u, y − v) − t

)

√(
∑

x,y

(
f (x, y) − fu,v

)2
) ((

t (x − u, y − v) − t
)2

)

where:

t is the template image under test of a size
a × b.

f (x, y) is the captured image from the EOL PC
of a size M × N.

t is the mean of the template image.
fu,v is the mean of f (x, y) in the region under

the template.

The calculation involves following steps:

1) Calculate the correlation complexity (it is
bounded by O

(
N.M. log2 M

)
since M and N

values are significantly larger than a and b).
2) Calculate the local sums by pre-calculating

running sums using recursive formulae. The
computational complexity is of the order of
O (3.M.N).

3) Use local sums to normalize the cross-
correlation to calculate the correlation co-
efficients. The normalization complexity is
constant, (O(1)).

Thus, from the given equation we can see that
reducing the dimension of the captured image
from the EOL PC will reduce the time required
for calculation of the 2D FFT while reducing the
calculation of the local sums which are used in the
normalization process.

3.2 Genetic Algorithm

The disassembly sequence generation module is
an improved version of previously published work

and obtains near-optimal and/or optimal disas-
sembly sequences in a step-wise manner. The
algorithm proposed in [2] functions under the as-
sumptions of: (1) the BOM preserves its original
structure, (2) the part coordinates are available,
and (3) the precedence relationships for removal
are known. The algorithm then disassembles the
end-of-life PC to remove the parts demanded
for reuse and/or recycling. The proposed algo-
rithm relaxes the above assumptions and utilizes
only the demand information to launch the sen-
sory vision module. The module generates 2 and
21/2-D maps of the EOL PC and produces part
matches. The recognized parts and their coordi-
nates are then fed into the GA module that gen-
erates a near-optimal and/or optimal disassembly
sequence for the detected parts. The disassembly
sequence with the appropriate part coordinates
is then transferred to the robot arm manipulator.
After the removal of each identified part the dy-
namically active sensory modules detect the parts
that become accessible. If no new part is detected
the current sequence is continued. If a new part
is detected a new sequence is generated for the
newly accessible parts and the remaining parts
detected in the previous sequence.

The steps of the proposed GA can be summa-
rized as follows (Table 3).

Initial Population The initial population consists
of hundred (ncr = 100) random chromosomes that
satisfy the precedence relationships and any other
constraints imposed by the product structure.
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Table 3 Steps of the
proposed genetic
algorithm

Step 1. Start with a population of (ncr) random individuals each with chromosome
length (chl).

Step 2. Calculate the fitness F(ch,gn) of each chromosome (ch) in the generation (gn).
Step 3. Permute the current chromosomes.
Step 4. Select the first 40 chromosomes for the next generation.
Step 5. Select 60% of the remaining chromosomes for crossover.
Step 6. Randomly calculate the crossover probability. If probability holds, perform

precedence preservative crossover (PPX) operation, and generate the
children for the next generation.

Step 7. Randomly calculate the mutation probability. If probability holds, perform
the mutation operation on a randomly selected number (rnd) of chromosomes
starting from the first chromosome, generate the output of the mutation as a
new population; if not, define the current population as the new population.

Step 8. Return to Step 2 until the new generation contains ncr chromosomes. Then
replace the old population with the new generation.

Step 9. If the termination condition is satisfied, STOP, else return to Step 2.

Crossover The precedence preservative cross-
over (PPX) methodology is utilized for the
crossover operation. Here, in addition to the par-
ents (Parent1 and Parent2), two additional strings
(Child1 and Child2) pass on the precedence rela-
tionship based on the two parental permutations
to two new offspring while making sure that no
new precedence relationships are introduced. A
vector, representing the number of operations
involved in the problem is randomly filled with
elements of the set. This vector defines the order
in which the operations are successively drawn
from Parent1 and Parent2.

The PPX algorithm generates an empty off-
spring. The leftmost operation in one of the two

parents is selected in accordance with the order of
parents given in the vector. After an operation is
selected it is taken out from both parents and is
appended to the offspring. This step is repeated
until both parents are empty and the offspring
contains all operations involved.

Mutation The population is subjected to muta-
tion operation with a given probability. If the
probability threshold holds, perform the muta-
tion operation on a randomly selected number
of chromosomes (rnd), where (0<rnd<n−1), and
swaps any two random components in all selected
chromosomes without violating the precedence
relationships and the overall feasibility (Table 4).

Table 4 System
parameters of the
proposed genetic
algorithm

Parameter Value/explanation

Initial population Random and feasible
Population size ncr = 100
Length of the chromosome chl = n * 5 (n changes in each level)
Max. number of generations 100
Crossover operator Precedence preservative crossover (PPX)
Mutation operator Applies to a random number (rnd) of chromosomes

(0<rnd<n−1) and swap any two components
Crossover probability 0.60
Mutation probability 0.005
Selection procedure Roulette selection
Regeneration procedure Selected chromosomes are cloned to keep the

population size constant
Fitness parameters Basic disassembly time, travel time for robot arm in 3D

space, penalty for method change, penalty for pairs
Assumptions Every component is assumed to have one joint that

connects the component with the rest of the product
structure
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Fitness Evaluation The fitness value is obtained
by the overall disassembly time. Disassembly time
involves the time spent for the disassembly oper-
ations, the travel time for the robot arm in 3D
space, the penalty for method change, and the
award for recycling pairs. The first time parameter
is the basic disassembly time for component i in
sequence j, (dtij).

The second function (ttij) is the penalty (in
seconds) for each travel time to disassemble com-
ponent i in sequence j, which includes a func-
tion of the distance traveled between the (j−1)th
and jth sequences and the robot arm speed
factor (sf):

ttij =
√(

Xi( j−1) − Xij
)2 + (

Yi( j−1) − Yij
)2 + (

Zi( j−1) − Zij
)2

sf

The proposed model assumes that the end
effector speed for the robot arm is a constant
value of 7 cm/sec. In addition, the time spent for
the robot arm angle change (for all three angles) is
assumed to be embedded in the disassembly time
for each component.

The third criterion in the fitness function is the
penalty for disassembly method change (mtij), for
the time spent for tool change during the disas-
sembly operations. For each disassembly method
change, the sequence is penalized by 1 s:

mtij = 0, If no method change is required, (e.g. ND to ND)

1, If method change is required, (e.g. ND to D)

In addition, the algorithm searches for a
“recycling pair” and does not penalize the se-
quence if the two adjacent components are made
of the same material and if they are both de-
manded for recycling.

Let T j denote the cumulative disassembly time
after the disassembly operation in sequence j is
completed for component i. In the case where
there is no recycling pair, the overall disassembly
time for sequence j is calculated as:

T j = T j−1 + dtij + ttij + mtij, for j = 1, . . . , n − 2.

In the case where there is a recycling pair,
the travel and method change times are omitted
from the equation. Hence, the overall penalty for
sequence j can be calculated as:

Ti = T j−1 + dtij, for j = n − 1 (1)

In this proposed GA model, the objective is to
minimize the total fitness function (F) by minimiz-

ing (i) the traveled distance, (ii) the number of dis-
assembly method changes, and (iii) by combining
the identical-material components together, elim-
inating unnecessary disassembly operations. Let
F(ch, gn) denote the total fitness for chromosome
ch in generation gn. Hence, the total time to dis-
assemble all the components can be calculated as
in Eq. 2:

F (ch, gn) =
n−1∑

j=0

dtij +
n−2∑

j=0

ctij +
n−2∑

j=0

mtij,

∀ j, j = 0, . . . , n − 1. (2)

Selection and Regeneration Procedure After
every generation, the chromosomes obtain a cer-
tain expectation depending on their fitness values.
A roulette wheel is then implemented to select
the sequence of parents that will be included
in the next generation (the higher the fitness
value the higher the chance to be selected). This
method aims at allowing the parents in the current
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generation to be selected for the next generation
without getting trapped in the local optima. In ad-
dition, a new population is generated eliminating
the weak chromosomes.

Termination The algorithm is terminated when
the maximum number of generations is exceeded
or no further improvement is obtained.

4 Results

The proposed algorithm optimizes the disassem-
bly sequence for the above defined fitness func-
tion at every step when a new template is detected.
For the provided EOL PC, the algorithm starts
with the generated sequence (2 3 4), and removes
component 2 (power supply). Detection is then
reactivated after the removal, and components 5,
6, 7, and 8 are detected. A new sequence is then
generated to include newly detected components
and the components that are not yet removed
from the BOM (components 3 and 4). Following
this, a new sequence is generated (7 8 6 3 5 4).
After the removal of component 7, the detection
is reactivated and component 9 is detected, fol-
lowed by a new sequence generation to include
the still intact components (8 6 3 5 4) and newly
detected component (9). This is followed by a
new sequence generation. The algorithm contin-
ues until all the reusable and recyclable com-
ponents are taken out from the EOL product
structure.

Table 5 summarizes the model results and pro-
vides detection times along with the time it takes
to optimize the sequence for each template. The
best sequence obtained in each step, the corre-

Table 5 Results of the proposed genetic algorithm

Step Detection Optimization Best Fitness
time (s) time (s) sequence value (s)

1 0.45 N/A 1 24.74
2 0.30 0.4680 2 3 4 49.16
3 0.12 0.1248 7 8 6 3 5 4 61.89
4 0.08 0.3276 8 6 3 4 5 9 60.99
5 0.02 0.3744 10 6 3 4 5 9 64.24

Visual images captured for each step 

Step 
1 

2 

3 

4 

5 

Fig. 4 Visual images captured for each disassembly step

sponding fitness values are also provided in the
table.

Figure 4 depicts the visual images captured by
the camera for each disassembly step.

5 Conclusions and Future Work

From the given numerical results of the de-
tection and optimization time we can conclude
that the total time required for both detection
and optimization of each step is less than the
minimum disassembly time of the BOM, which
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means that the proposed method provides for real
time disassembly systems. Since our Normalized
Cross-correlation method uses 2D FFT for cal-
culating the correlation and local sums for the
normalization, the proposed method performance
can be enhanced by using parallel processing tech-
niques on the newer multi-core processors. One of
the main advantages of the proposed method is its
ability to handle uncertainty, allowing flexibility
in the disassembly sequence generation. Further-
more, the method releases unrealistic assumptions
and constraints in the GA population allowing
improvement in the optimization computations.
The algorithm produces reliable and accurate dis-
assembly sequences. The 21/2-D module utilized to
map the depth via a range finder increase both
the accuracy and computation time for the visual
segmentation and matching framework. The area
of automated disassembly research is relatively
new, and even though few studies demonstrate
electronic disassembly cells [30–34, 38], this re-
search project is one of very few environmentally
driven and economically benign disassembly ap-
plications combining robotics research with much
needed sustainability endeavors. In addition, the
online selective disassembly sequencing algorithm
proposed in the study further improves the exist-
ing body of research in the area of disassembly.
Future work will include improving the system
capability to capture 3-D models.
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