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Abstract� In this work we address the problem of visualizing the uncertainty in
sensed data for manufacturing applications� Constructing geometric models for
the objects from sense data is the intermediate step in a reverse engineering
manufacturing system� Sensors are usually inaccurate� providing uncertain sense
information� We construct geometric entities with uncertainty models for the objects
under consideration from noisy measurements� This case study deals mainly with ways
of visualizing the uncertainty in the geometric entities� in order to aid making later
decisions on the geometry of the reconstructed parts�
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�� INTRODUCTION

Reverse engineering is a process that reconstruct
a representation of a physical model� so that it
can be reproduced identically� It is a new branch
in the CAD�CAM �eld� Parts are manufactured
according to blue prints� but when blue prints are
not available� �such as� the part is too old� and
its blue prints are missing�� reverse engineering
can be used to reproduce these parts� This can
be achieved by the following two steps� sensing
the part to construct its CAD representation
and then manufacturing the part according to
the representation� It is easy to see that the
accuracy of measurement is the key to success in
reproducing an accurate CAD model�

The accuracy of the measurement can be im	
proved not only by improving the quality of mea	
suring instrument� but also by optimizing sam	
pling data� A reverse engineering system has been
built and the measuring process is done by a vision
sensor �B�W CCD camera��

In our reverse engineering system� we use a prob	
abilistic approach to provide information for fur	

ther measurements required to re�ne the CAD
model� and also gives a quantitative measure of
the accuracy of the current CAD model� The geo	
metric reasoning on the probabilities of uncertain
geometries can guide the sensor to perform fo	
cused measurements to allow for higher accuracy
and e
ciency� For instance� the slot �see �gure ��
in mechanical engineering is a commonly used
feature� and the parallelism of the two side planes
is an important measurement�

The two side planes are based on sampling points
from sensed data� Measurements of these points
are not exact� therefore� these two planes that are
constructed from these measurements� are planes
with probabilities as the con�dence measure� Con	
sequently� the parallelism is no longer a de�nite
relation� it has a probability distribution� If the
con�dence of the parallelism does not satisfy the
manufacturing requirement� re�nement of the two
side planes is required� hence re	measuring of the
points is performed�

Some work has been done in the probabilistic rela	
tionship between the geometric objects and their



Fig� �� Slot

relations� but the probability relations between
the sampling points and geometric primitives have
not yet been studied extensively� The geometric
objects that this probabilistic geometric modeler
is based on are constructed from sensing data�
Therefore� study of the relation of the probabilis	
tic characters of geometric objects and sensing
data is very important� This work presents the
study of these relations and ways of visualizing
them� The work addresses the statistic geometric
objects constructed from sensing data� relations
of these statistic geometries� and the e�ect of
decisions on its relative geometric objects�

�� RELATED WORK

Stochastic geometry has been systematically stud	
ied by mathematicians� In ���� mathematical the	
ories of stochastic geometry are well studied� and
uncertain geometric features can be represented
as constrained functions� Classic examples of
stochastic geometry can be found in ���� Kendall
and Moran���� describe a method of choosing dis	
tributions on geometric elements which provide
a consistent interpretation of physical geometric
elements�

Recently� research about sensing and uncertain
geometry in robotics presents lots of ideas for
handling uncertainty geometry� Hugh F� Durrant	
Whyte in ��
 �� has modeled the sensor in a
manner that explicitly accounts for the inherent
uncertainty encountered in robot operations� In
Davidson�s thesis���� he made the important ob	
servation that arbitrary random geometric objects
can be described by a point process in parameter
space�

In computer	aided geometric modeling� method	
ologies for building a robust geometric modeler
explores ways of handling the uncertain geometry
caused by the imprecise computations� Arbitrary
decisions are made� when uncertainty arises� In
��
 �
 �
 �
 �
 �
 �
 �
 ��� three region tolerances

are used to keep track of uncertainty caused by
the computational error� In ���� arbitrary deci	
sions are made and corresponding uncertainties
are restricted�

�� REPRESENTATIONS FOR UNCERTAIN
GEOMETRY

In geometric modeling� algorithms and represen	
tations for geometric objects are well developed�
but the tolerance �uncertainty of geometry� has
not yet been well de�ned� In ���� a geometric
object is represented by boundary and hybrid
representations� associated with a tolerance rep	
resenting the uncertainty of the geometry�

Based on the representations that has been devel	
oped and used in ���� a representation for uncer	
tain geometry is developed as follows�

An uncertain geometric object is represented in
two parts� a geometric description� and a prob	
abilistic distribution of geometry� The geometric
description is a parameter vector� and the proba	
bilistic distribution of geometry is a vector of the
same dimensions as the geometric description� but
with corresponding probabilistic distributions of
the parameters�

For instance� a plane can be speci�ed as a equa	
tion� �A�B�C�� �fa� fb� fc�� where �A�B�C� is the
geometric description and z � Ax � By � C�
�fa� fb� fc� is the probabilistic distribution of ge	
ometry� and also can be speci�ed in another form�
�P� V �� �fp� fv�� where P is a base point� and V is
the normal vector of the plane� fp is the uncer	
tainty of the base point� and fv is the uncertainty
of the normal vector� It can be proved that fp and
fv can be computed from fa� fb� fc� and P � V can
be computed from �A� B� C�� By de�ning fa� fb�
fc� di�erent types of probability distributions can
be handled by this representation�

�� EXPERIMENT ON STATISTIC
GEOMETRIC OBJECTS CONSTRUCTED

FROM SENSING DATA

The geometric objects being dealt with are con	
structed from the sensed data� How the distribu	
tion of sensing data a�ects the uncertainty of the
geometry is the basis for de�ning the distributions
of the geometry� In this section� the uncertainty of
the plane relating to the sensing �D coordinates
is studied� A set of discrete sensing data is used
to perform the computations�

��� Best Least Square Fit

In order to reduce the random error� usually�
n sampling points are measured to de�ning a



plane� yet the points have certain probability dis	
tributions which mainly depend on the measuring
machine� the n points are independent random
events� Therefore� a best least square �t method
for computing the plane parameter is used� This
approach gives the maximum liklehood result� and
con�dence on the sampling data to be a plane�

Assuming that input data is �xi� yi� zi�� where
xi� yi� zi are either �xed values� or probability
functions� They can be either independent� or
correlated� Explicit function de�nition for a plane
in �D will be z � Ax�By�C� If there are n points�
the best least �t plane should be the solution of
the following equation set�

Z � P �X

Because P is an n x � matrix� and X is a � x �
matrix� rank�P � � �� and n � �� solution of X is
unique� When n � �� the solution X is a best least
square �t�

X � �P T � P ��� � P � Z

Or in the other form�

A � f�x� y� z�
B � g�x� y� z�
C � h�x� y� z�

Where x � �x�� x��� y � �y�� y��� z � �z�� z�� are
discrete� Function f� g� h are non	linear functions�
To compute the probability distribution of A�
B� and C� exhaustively computing values of f �
g� and h� will provide the discrete probability
distribution array for A� B� and C�

From the above mathematics� we can see that the
computation complexity is exponential� Ifm is the
number of distribution values and n is the number
of sampling points� this above computation will be
performed ��m�n times�

��� Sensing Data and its Corresponding Results

The sensing data is modeled by discrete points
with their corresponding probabilities� Normally�
a point in �D is represented as �x� y� z�� but for
this sensing data� x� y� and z� are no long a single
value� they are distributions as shown in �gure ��

Due to the computational complexity� and the
generality of the problem� a three distribution val	
ues data set is used for experiments� The resulting
planes �A�B�C� along with their distributions are
computed� Graphs of A�B� and C distributions are
approximated by the following computations�

What we want to get is the concept of the f�x�
shape� The data we computed are discrete state
vector �A�B�C� and its probability� P �xi � x �
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f�x� is computed and plotted�
where x can be A� B� or C� and xmin � xi � xmax�
In order to smooth the curve� an overlapped set
of xi is used� In the result �gures� the x axis are
the values of A� B� C respectively� and the y axis
are the corresponding probability of that value�

Test �� Uniform distribution� the sensing data is
shown in �gure ��
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Fig� �� Uniform Distribution

There are a total three points with such distri	
butions� planes de�ned by these points are com	
puted�

Test �� Gaussian distribution� the sensing data is
shown in �gure �
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Fig� �� Gaussian Distribution

There are a total of three points with such dis	
tributions� the planes de�ned by these points are
computed�

Next� we discuss an algorithm for visualizing the
groups of resulting probabilistic planes from the
sensed data�



�� VISUALIZING SENSED DATA FOR
PLANAR SURFACES

��� Introduction

Problem � Given sensed data for planar surfaces
the goal is to design an algorithm for grouping this
data and then �nding e�ective ways of visualizing
these groups�
Each actual planar surface is represented by a very
large number of planes of the form �
Z � ai X � bi Y � ci
The sensed data consists of �

� ai�bi�ci values for each of the above planes�
� Probability of each plane represented by
�ai�bi�ci� of being the actual planar surface�

Given the above sensed data we want to �nd a
way to cluster these �ai�bi�ci��s according to their
spatial proximity in �a�b�c� �D space and then to
�nd a suitable way of visualizing these clusters�

��� The Algorithm

��� Use a Recursive Algorithm to �nd all
pairs of points ��i��j� such that the distance
between them does not exceed a small num	
ber ��

��� The above step returns a set of clusters each
having two elements such that the distance
between these two elements does not exceed
a small number �� In this step we group all
those clusters having one common element
i�e� if ����������������� are some of the clusters
returned by the previous then this step would
combine these three clusters to form a �nal
cluster ���������� So this step in e�ect reduces
the number of clusters returned by the pre	
vious step by combining all those clusters
which have points at a distance not more
than � from a common point which is the
SEED for that cluster�

��� The goal of this step is to combine clusters
returned by the previous step by identifying
the Seed for each cluster� In this step we
represent each cluster as a n band of planes
where n is the number of �a�b�c� values in
this cluster� The planes are represented by
triangles� Each cluster is represented in a
di�erent color� The thickness of a set of
triangles representing a cluster are a measure
of the probability of this set of a�b�c values
of being that of the actual plane�

������ Detailed Description of the Algo�

rithm Step �� Our Algorithm uses the n�
dimensional BILS Method ����
n�dimensional BILS Method

Suppose we wish to solve an n dimensional prob	
lem � for a set S � �����������m of m points in
n dimensional space report all coincident pairs
��i��j� such that �i and �j �i � j� are points
in S and the distance between �i and �j does not
exceed a given small number ��
Let �i in S be represented as an ordered set of n
�oating point numbers ��i���i�������in�� So� �i �
��i���i�������in�� for i � ������� m

In each axis direction k� we �nd the lower bound
lbk and the upper bound ubk� Thus we can �nd
the bounding box which encloses S by n intervals
�lbj �ubj �� where j � ��������n�
The algorithm computes the dividing axis k as
R modulo n where R is the current recursion
depth and n is the dimension of the space� The
kth interval of the bounding box B is subdivided
into two subintervals of equal size �lbk�midpoint�
and �midpoint�ubk�� Hence the bounding box B is
subdivided into two boxes B� and B��
The original List of indices L is subdivided into
two sublists L� and L� so that L� contains the in	
dices of all points which are in B� and L� contains
the list of all indices which are in B�� The List
is subdivided into two lists L� and L� by simply
comparing the kth co	ordinate �ik of �i with two
threshold values �midpoint 	 �� and �midpoint �
�� for each element i in the List� The algorithm
allows the index list subdivision method to be
�binary� subdivision regardless of the dimension
of the space�
The above algorithm as given by ��� does not
give a way on deciding on � and the value of �
is constant regardless of the data points� Our al	
gorithm is adaptive because the value of � changes
for di�erent clusters depending on the data points�
In our algorithm we set � to a small value initially
and keep increasing � and calling the above recur	
sive algorithm till all the a�b�c values are in some
cluster� At the end of this step each cluster has a
pair of points at a distance not more than � from
each other where � may be di�erent for di�erent
clusters�

Our Algorithm �

� � �	
DONE � FALSE	
While NOT DONE
DONE � TRUE	
rec depth � 
	
Initialize the bounds array to the minimum
and maximum values along the X�Y and Z
directions�
bils�index�num elements�bounds�rec depth
	
For each element i in the index array
If any element is not in a cluster
DONE � FALSE	
increment � by �	



end of while

In the above algorithm �

� The bounds array has the minimum and
maximum value in all axis directions�
In our case we are working with �D
points and so X�Y and Z are the axis
directions�

� The index array has the list of all in�
dices�

� num elements is the total number of
�a�b�c
 values�

� rec depth is the recursion depth�

The above algorithm calls the following bils
algorithm �
bils�index list�num index�b�curr rec depth

If��num index �� �� OR �curr rec depth ��
MAX DEPTH�

search�index list�num index
	
else k � curr rec depth modulo n	
n� � 
	 n� � 
	
Let the mean of lbk and ubk be midpoint�
where lbk and ubk are the lower and upper
bounds of the kth dimension�
For each element i in the index list Let k�i�
be the kth co�ordinate of a point �i in S�
If k�i� �� �midpoint � �

add i to list�	 increment n� by ��
If k�i� �� �midpoint � �

add i to list�	 increment n� by ��
If�n� � �

Set the kth interval of b to be �lbk�midpoint�	
bils�list��n��b�curr rec depth � �
	
If�n� � �

Set the kth interval of b to be �midpoint�ubk�	
bils�list��n��b�curr rec depth � �
	

In the above algorithm �

� index list array has the list of all indices�
� num index is the total number of �a�b�c

values�

� b has the minimum and maximum val�
ues in each axis direction�

� curr rec depth is the current recursion
depth�

� S is the list of �a�b�c
 values�

Step �� This step combines clusters returned by
the previous step and the criteria for combining
is that the elements in a �nal cluster should be
within a distance not more than � from the seed
of the cluster�

i � 
	 j � �	 �nal cluster count � 
	
Let the �rst and second element in cluster
i be clusteri� and clusteri� respectively�
Let the �rst and second element in cluster
j be clusterj� and clusterj� respectively�

For each cluster i in the cluster array
If clusteri� is not in any �nal cluster
SET SEED � clusteri�	
Put clusteri� in �nal cluster k�
If clusteri� is not in any �nal cluster
Put clusteri� in �nal cluster k�
else If clusteri� is not in any �nal cluster
SET SEED � clusteri�	
Put clusteri� in �nal cluster k�
For each cluster j in the cluster array �i �
j

If�clusterj� �� SEED

If clusterj� is not in any it �nal cluster
Put clusterj� in �nal cluster k�
increment �nal cluster count	
increment i	 SET j � i� �	

Step �� Once we have the �nal clusters i�e� for
each cluster we have a set of a�b�c values� These
a�b�c values represent planes of the form
Z � a X � b Y � c
For each a�b�c value in a cluster we �nd the inter	
section of the plane it represents with the three
principal axes X�Y�Z�
Intersection with Z axis put X � �� Y � � and so
we get �����c��
Intersection with X axis put Z � �� Y � � and so
we get �	c�a������
Intersection with Y axis put X � �� Z � � and so
we get ���	c�b����
So we now have three points on the plane i�e� the
intersection with X�Y and Z axes� We therefore
represent each plane as a triangle� A cluster is
represented as a band of triangles� Each plane has
a probability of being the actual plane� Now a
cluster has a number of such planes� A cluster
with more planes will have a higher cluster prob	
ability and this is indicated by the thickness of the
triangles�

�� RELATIONS OF STATISTIC
GEOMETRIES AND ITS EFFECT ON

RELATIVE GEOMETRIES

As mentioned in the introduction� the goal of this
probabilistic approach is to feedback control to
the sensing devices to measure the physical model
and give a quantitative con�dence measurement
for the CAD model� Some relations of these un	
certain geometries are computed� and results are
computed with their uncertainty distributions�

Basically� geometric relations are set relations�
For example
 intersecting� coincidence� incidence�
apartness� and parallelism� Because of the un	
certainty of the geometries� these relations are
not de�nite� they are decisions with certain con	
�dence� also� this con�dence can be speci�ed by



its probability� For instance� a point incident on
a plane� can be computed as a point incident
on the plane with ��� probability� This provides
reasoning based on probabilities�

A feedback computation of a plane that is sup	
posed to be collinear with a given plane is studied�
A program that takes the output discrete planes
along with their probabilities is implemented� and
the cases of parallel and collinear statements are
computed with their probabilities� Some examples
of parallelism and collinearity have been tested�
For example� collinearity and parallelism of the
uniform distribution planes �as described above
has been tested�� The probability for parallelism
is ��������� for collinearity is ��������� The par	
allelism and collinearity of the planes of the three
points Gaussian distribution and the uniform dis	
tributions have also been tested� The parallelism
is ����������� and the collinearity is �����������
�the tolerance for testing them is the square dis	
tance less than ��e����

A B C P�probability�
������	� 
�����
�� 	��
���
 ����
������
� 
�������� 	������
 ����
����
��	 
�������� 	�����	� ����

If we assume that the plane constructed from the
uniform distribution sensing data is decided to be
collinear to the plane de�ned by the above table�
then� its distribution is recomputed as follows�
among this plane set� the plane instances which
are not collinear with any of the plane instances
in the given plane set� is discarded�

�� CONCLUSIONS

Based on real sensing data� the probability of the
geometry of the objects under consideration is
computed and visualized� This provides us with
the capability to de�ne the probability distribu	
tion of the geometry based on robust compu	
tations as opposed to noisy measuring instru	
ments� The relations between uncertain geome	
tries are dependent on the uncertainty of ge	
ometries� Quantitative measurement for the con	
structed CAD model can thus be computed and
decisions can be made with the help of the visu	
alization modules�
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