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Abstract: In this work we address the problem of visualizing the uncertainty in
sensed data for manufacturing applications. Constructing geometric models for
the objects from sense data is the intermediate step in a reverse engineering
manufacturing system. Sensors are usually inaccurate, providing uncertain sense
information. We construct geometric entities with uncertainty models for the objects
under consideration from noisy measurements. This case study deals mainly with ways
of visualizing the uncertainty in the geometric entities, in order to aid making later
decisions on the geometry of the reconstructed parts.
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1. INTRODUCTION

Reverse engineering is a process that reconstruct
a representation of a physical model, so that it
can be reproduced identically. It is a new branch
in the CAD/CAM field. Parts are manufactured
according to blue prints, but when blue prints are
not available, (such as, the part is too old, and
its blue prints are missing), reverse engineering
can be used to reproduce these parts. This can
be achieved by the following two steps: sensing
the part to construct its CAD representation
and then manufacturing the part according to
the representation. It is easy to see that the
accuracy of measurement is the key to success in
reproducing an accurate CAD model.

The accuracy of the measurement can be im-
proved not only by improving the quality of mea-
suring instrument, but also by optimizing sam-
pling data. A reverse engineering system has been
built and the measuring process is done by a vision
sensor (B/W CCD camera).

In our reverse engineering system, we use a prob-
abilistic approach to provide information for fur-

ther measurements required to refine the CAD
model, and also gives a quantitative measure of
the accuracy of the current CAD model. The geo-
metric reasoning on the probabilities of uncertain
geometries can guide the sensor to perform fo-
cused measurements to allow for higher accuracy
and efficiency. For instance, the slot (see figure 1)
in mechanical engineering is a commonly used
feature, and the parallelism of the two side planes
is an important measurement.

The two side planes are based on sampling points
from sensed data. Measurements of these points
are not exact, therefore, these two planes that are
constructed from these measurements, are planes
with probabilities as the confidence measure. Con-
sequently, the parallelism is no longer a definite
relation, it has a probability distribution. If the
confidence of the parallelism does not satisfy the
manufacturing requirement, refinement of the two
side planes is required, hence re-measuring of the
points is performed.

Some work has been done in the probabilistic rela-
tionship between the geometric objects and their



Fig. 1. Slot

relations, but the probability relations between
the sampling points and geometric primitives have
not yet been studied extensively. The geometric
objects that this probabilistic geometric modeler
is based on are constructed from sensing data.
Therefore, study of the relation of the probabilis-
tic characters of geometric objects and sensing
data is very important. This work presents the
study of these relations and ways of visualizing
them. The work addresses the statistic geometric
objects constructed from sensing data, relations
of these statistic geometries, and the effect of
decisions on its relative geometric objects.

2. RELATED WORK

Stochastic geometry has been systematically stud-
ied by mathematicians. In (?), mathematical the-
ories of stochastic geometry are well studied, and
uncertain geometric features can be represented
as constrained functions. Classic examples of
stochastic geometry can be found in (7). Kendall
and Moran(?), describe a method of choosing dis-
tributions on geometric elements which provide
a consistent interpretation of physical geometric
elements.

Recently, research about sensing and uncertain
geometry in robotics presents lots of ideas for
handling uncertainty geometry. Hugh F. Durrant-
Whyte in (?; ?) has modeled the sensor in a
manner that explicitly accounts for the inherent
uncertainty encountered in robot operations. In
Davidson’s thesis(?), he made the important ob-
servation that arbitrary random geometric objects
can be described by a point process in parameter
space.

In computer-aided geometric modeling, method-
ologies for building a robust geometric modeler
explores ways of handling the uncertain geometry
caused by the imprecise computations. Arbitrary
decisions are made, when uncertainty arises. In
(72,2, 7, 7,7, 7, 7, 7), three region tolerances

are used to keep track of uncertainty caused by
the computational error. In (?), arbitrary deci-
sions are made and corresponding uncertainties
are restricted.

3. REPRESENTATIONS FOR UNCERTAIN
GEOMETRY

In geometric modeling, algorithms and represen-
tations for geometric objects are well developed,
but the tolerance (uncertainty of geometry) has
not yet been well defined. In (?), a geometric
object is represented by boundary and hybrid
representations, associated with a tolerance rep-
resenting the uncertainty of the geometry.

Based on the representations that has been devel-
oped and used in (?), a representation for uncer-
tain geometry is developed as follows:

An uncertain geometric object is represented in
two parts: a geometric description, and a prob-
abilistic distribution of geometry. The geometric
description is a parameter vector, and the proba-
bilistic distribution of geometry is a vector of the
same dimensions as the geometric description, but
with corresponding probabilistic distributions of
the parameters.

For instance, a plane can be specified as a equa-
tion: (A, B,C), (fa, fs, fc), where (A, B, () is the
geometric description and z = Ax + By + C.
(fas [, fc) is the probabilistic distribution of ge-
ometry, and also can be specified in another form:
(P,V),(fp, fv), where P is a base point, and V is
the normal vector of the plane. f, is the uncer-
tainty of the base point, and f, is the uncertainty
of the normal vector. It can be proved that f, and
fv can be computed from f,, fp, fc, and P, V can
be computed from (A, B, C). By defining f,, fs,
fe, different types of probability distributions can
be handled by this representation.

4. EXPERIMENT ON STATISTIC
GEOMETRIC OBJECTS CONSTRUCTED
FROM SENSING DATA

The geometric objects being dealt with are con-
structed from the sensed data. How the distribu-
tion of sensing data affects the uncertainty of the
geometry is the basis for defining the distributions
of the geometry. In this section, the uncertainty of
the plane relating to the sensing 3D coordinates
is studied. A set of discrete sensing data is used
to perform the computations.

4.1 Best Least Square Fit

In order to reduce the random error, usually,
n sampling points are measured to defining a



plane, yet the points have certain probability dis-
tributions which mainly depend on the measuring
machine, the n points are independent random
events. Therefore, a best least square fit method
for computing the plane parameter is used. This
approach gives the maximum liklehood result, and
confidence on the sampling data to be a plane.

Assuming that input data is (z;,y;,2;), where
Ti,Yi,z; are either fixed values, or probability
functions. They can be either independent, or
correlated. Explicit function definition for a plane
in 3D will be z = Az+By+C. If there are n points,
the best least fit plane should be the solution of
the following equation set.

Z=PeX

Because P is an n x 3 matrix, and X is a 3 x 1
matrix, rank(P) = 3, and n > 3, solution of X is
unique. When n > 3, the solution X is a best least
square fit.

X=(PTeP) lePeZ

Or in the other form:

A= f(z,y,2)
B = g(z,y,2)
C = h(z,y,2)

Where z € [z1,22], y € [y1,92], 2 € [z1,22] are
discrete. Function f, g, h are non-linear functions.
To compute the probability distribution of A,
B, and C, exhaustively computing values of f,
g, and h, will provide the discrete probability
distribution array for A, B, and C.

From the above mathematics, we can see that the
computation complexity is exponential. If m is the
number of distribution values and n is the number
of sampling points, this above computation will be
performed (3™)™ times.

4.2 Sensing Data and its Corresponding Results

The sensing data is modeled by discrete points
with their corresponding probabilities. Normally,
a point in 3D is represented as (z, y, z), but for
this sensing data, , y, and z, are no long a single
value, they are distributions as shown in figure 2.

Due to the computational complexity, and the
generality of the problem, a three distribution val-
ues data set is used for experiments. The resulting
planes (4, B, C) along with their distributions are
computed. Graphs of A,B, and C distributions are
approximated by the following computations.

What we want to get is the concept of the f(x)
shape. The data we computed are discrete state
vector (A, B, () and its probability. P(z; < = <
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Fig. 2. Sensing Data
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Tip1) = f;ﬁ_"“ f(z) is computed and plotted,
where x can be A, B, or C. and Zpin < 7; < Tmae-
In order to smooth the curve, an overlapped set
of z; is used. In the result figures, the = axis are
the values of A, B, C respectively, and the y axis
are the corresponding probability of that value.

Test 1: Uniform distribution: the sensing data is
shown in figure 3.
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Fig. 3. Uniform Distribution

There are a total three points with such distri-
butions, planes defined by these points are com-
puted.

Test 2: Gaussian distribution: the sensing data is
shown in figure 4
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Fig. 4. Gaussian Distribution

There are a total of three points with such dis-
tributions, the planes defined by these points are
computed.

Next, we discuss an algorithm for visualizing the
groups of resulting probabilistic planes from the
sensed data.



5. VISUALIZING SENSED DATA FOR
PLANAR SURFACES

5.1 Introduction

Problem : Given sensed data for planar surfaces
the goal is to design an algorithm for grouping this
data and then finding effective ways of visualizing
these groups.

Each actual planar surface is represented by a very
large number of planes of the form :
Z=a;X+b;Y + ¢

The sensed data consists of :

e a;,b;,c; values for each of the above planes.
e Probability of each plane represented by
(ai,bi,c;) of being the actual planar surface.

Given the above sensed data we want to find a
way to cluster these (a;,b;,c;)’s according to their
spatial proximity in (a,b,c) 3D space and then to
find a suitable way of visualizing these clusters.

5.2 The Algorithm

(1) Use a Recursive Algorithm to find all
pairs of points («;,a;) such that the distance
between them does not exceed a small num-
ber e.

(2) The above step returns a set of clusters each
having two elements such that the distance
between these two elements does not exceed
a small number €. In this step we group all
those clusters having one common element
i.e.if (0,1),(0,2),(0,3) are some of the clusters
returned by the previous then this step would
combine these three clusters to form a final
cluster (0,1,2,3). So this step in effect reduces
the number of clusters returned by the pre-
vious step by combining all those clusters
which have points at a distance not more
than € from a common point which is the
SEED for that cluster.

(3) The goal of this step is to combine clusters
returned by the previous step by identifying
the Seed for each cluster. In this step we
represent each cluster as a n band of planes
where n is the number of (a,b,c) values in
this cluster. The planes are represented by
triangles. Each cluster is represented in a
different color. The thickness of a set of
triangles representing a cluster are a measure
of the probability of this set of a,b,c values
of being that of the actual plane.

5.2.1. Detailed Description of the Algo-
rithm  Step 1: Our Algorithm uses the n-
dimensional BILS Method (7).
n-dimensional BILS Method

Suppose we wish to solve an n dimensional prob-
lem : for a set S = ai,as9,...,a;,, of m points in
n dimensional space report all coincident pairs
(a,or5) such that o; and o; (i < j) are points
in S and the distance between «; and «; does not
exceed a given small number e.

Let «; in S be represented as an ordered set of n
floating point numbers (8;1,8i2,..-,8in). S0, a; =
(ﬁil >ﬁi2;-"7ﬁin); fori= 172)"' m;

In each axis direction k, we find the lower bound
Ib;, and the upper bound ubg. Thus we can find
the bounding box which encloses S by n intervals
[1bj,ub;], where j = 1,2,....n.

The algorithm computes the dividing axis k as
R modulo n where R is the current recursion
depth and n is the dimension of the space. The
kth interval of the bounding box B is subdivided
into two subintervals of equal size [lby,midpoint]
and [midpoint,ubg]. Hence the bounding box B is
subdivided into two boxes B; and Bs.

The original List of indices L is subdivided into
two sublists L; and Ly so that L; contains the in-
dices of all points which are in By and L» contains
the list of all indices which are in B,. The List
is subdivided into two lists L; and L, by simply
comparing the kth co-ordinate 3, of a; with two
threshold values (midpoint - €) and (midpoint +
€) for each element 7 in the List. The algorithm
allows the index list subdivision method to be
“binary” subdivision regardless of the dimension
of the space.

The above algorithm as given by (?) does not
give a way on deciding on € and the value of €
is constant regardless of the data points. Our al-
gorithm is adaptive because the value of € changes
for different clusters depending on the data points.
In our algorithm we set € to a small value initially
and keep increasing € and calling the above recur-
sive algorithm till all the a,b,c values are in some
cluster. At the end of this step each cluster has a
pair of points at a distance not more than e from
each other where ¢ may be different for different
clusters.

Our Algorithm :

e=1;

DONE = FALSE;

While NOT DONE

DONE = TRUE;

rec_depth = 0;

Initialize the bounds array to the minimum
and maximum values along the X,Y and Z
directions.
bils(index,num_elements,bounds,rec_depth);
For each element i in the indez array

If any element is not in a cluster

DONE = FALSE;

increment ¢ by 1;



end of while

In the above algorithm :

e The bounds array has the minimum and
maximum value in all axis directions.
In our case we are working with 3D
points and so X,Y and Z are the axis
directions.

e The inder array has the list of all in-
dices.

e num_elements is the total number of
(a,b,c) values.

e rec_depth is the recursion depth.

The above algorithm calls the following bils
algorithm :
bils(index_list,num_index,b,curr_rec_depth)
If((num_index <= €) OR (curr_rec_depth ==
MAX_DEPTH))
search(index_list,num_index);

else k = curr_rec_depth modulo n;

nl = 0; n2 = 0;

Let the mean of [b;, and ub;, be midpoint,
where [b; and ub; are the lower and upper
bounds of the kth dimension.

For each element i in the index_list Let k[i]
be the kth co-ordinate of a point o; in S.

If k[i] <= (midpoint + €)

add i to listl; increment ni by 1.

If k[i] >= (midpoint - €)

add i to [list2; increment n2 by 1.

If(nf > 1)

Set the kth interval of b to be [lby,midpoint];
bils(list1,n1,b,curr_rec_depth + 1);

If(n2 > 1)

Set the kth interval of b to be [midpoint,ub];
bils(list2,n2,b,curr_rec_depth + 1);

In the above algorithm :

e indez_list array has the list of all indices.

e num_indez is the total number of (a,b,c)
values.

¢ b has the minimum and maximum val-
ues in each axis direction.

e curr_rec_depth is the current recursion
depth.

e Sis the list of (a,b,c) values.

Step 2: This step combines clusters returned by
the previous step and the criteria for combining
is that the elements in a final cluster should be
within a distance not more than € from the seed
of the cluster.

i = 0; j = 1; final_cluster_count = 0;

Let the first and second element in cluster
i be cluster;; and cluster;> respectively.

Let the first and second element in cluster
j be cluster;; and cluster;> respectively.

For each cluster i in the cluster array
If cluster;; is not in any final_cluster
SET SEED = cluster;;;

Put cluster;; in final_cluster k.

If cluster;y is not in any final_cluster
Put cluster;; in final_cluster k.

else If cluster;y is not in any final_cluster
SET SEED = cluster;s;

Put cluster;s in final_cluster k.

For each cluster j in the cluster array (i <
j)

If(clusterjy == SEED)

If cluster;> is not in any it final _cluster
Put cluster;s in final_cluster k.
increment final_cluster_count;
increment i SET j =i+ 1;

Step 3: Once we have the final clusters i.e. for
each cluster we have a set of a,b,c values. These
a,b,c values represent planes of the form
Z=aX+bY+c

For each a,b,c value in a cluster we find the inter-
section of the plane it represents with the three
principal axes X,Y,Z.

Intersection with Z axis put X =0, Y = 0 and so
we get (0,0,c).

Intersection with X axis put Z = 0, Y = 0 and so
we get (-¢/a,0,0).

Intersection with Y axis put X = 0, Z = 0 and so
we get (0,-¢/b,0).

So we now have three points on the plane i.e. the
intersection with X)Y and Z axes. We therefore
represent each plane as a triangle. A cluster is
represented as a band of triangles. Each plane has
a probability of being the actual plane. Now a
cluster has a number of such planes. A cluster
with more planes will have a higher cluster prob-
ability and this is indicated by the thickness of the
triangles.

6. RELATIONS OF STATISTIC
GEOMETRIES AND ITS EFFECT ON
RELATIVE GEOMETRIES

As mentioned in the introduction, the goal of this
probabilistic approach is to feedback control to
the sensing devices to measure the physical model
and give a quantitative confidence measurement
for the CAD model. Some relations of these un-
certain geometries are computed, and results are
computed with their uncertainty distributions.

Basically, geometric relations are set relations.
For example; intersecting, coincidence, incidence,
apartness, and parallelism. Because of the un-
certainty of the geometries, these relations are
not definite, they are decisions with certain con-
fidence, also, this confidence can be specified by



its probability. For instance, a point incident on
a plane, can be computed as a point incident
on the plane with 0.9 probability. This provides
reasoning based on probabilities.

A feedback computation of a plane that is sup-
posed to be collinear with a given plane is studied.
A program that takes the output discrete planes
along with their probabilities is implemented, and
the cases of parallel and collinear statements are
computed with their probabilities. Some examples
of parallelism and collinearity have been tested.
For example, collinearity and parallelism of the
uniform distribution planes (as described above
has been tested). The probability for parallelism
is 0.824719, for collinearity is 0.334722. The par-
allelism and collinearity of the planes of the three
points Gaussian distribution and the uniform dis-
tributions have also been tested. The parallelism
is 0.66730846, and the collinearity is 0.27099140.
(the tolerance for testing them is the square dis-
tance less than 10e~2).

A B C P(probability)
1.034723 | -0.961805 | 2.386458 0.33
1.036584 | -0.966461 | 2.391768 0.34
1.038042 | -0.970109 | 2.395926 0.33

If we assume that the plane constructed from the
uniform distribution sensing data is decided to be
collinear to the plane defined by the above table,
then, its distribution is recomputed as follows:
among this plane set, the plane instances which
are not collinear with any of the plane instances
in the given plane set, is discarded.

7. CONCLUSIONS

Based on real sensing data, the probability of the
geometry of the objects under consideration is
computed and visualized. This provides us with
the capability to define the probability distribu-
tion of the geometry based on robust compu-
tations as opposed to noisy measuring instru-
ments. The relations between uncertain geome-
tries are dependent on the uncertainty of ge-
ometries. Quantitative measurement for the con-
structed CAD model can thus be computed and
decisions can be made with the help of the visu-
alization modules.
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